Causal Inference in Threshold Regression and the Neural Network Extension (TRNN)
نویسندگان
چکیده
The first-hitting-time based model conceptualizes a random process for subjects’ latent health status. time-to-event outcome is modeled as the first hitting time of to pre-specified threshold. Threshold regression with linear predictors has numerous benefits in causal survival analysis, such estimators’ collapsibility. We propose neural network extension threshold model. With flexibility networks, extended can efficiently capture complex relationships among and underlying processes while providing clinically meaningful interpretations, also tackle challenge high-dimensional inputs. proposed further be applied performing Q-model G-computation. More efficient estimations are expected given algorithm’s robustness. Simulations were conducted validate estimator collapsibility performance illustrated by using simulated real data from an observational study.
منابع مشابه
Nonparametric Threshold Regression: Estimation and Inference∗
The present work describes a simple approach to estimating the location of a threshold/change point in a nonparametric regression. This model has connections both to the time-series and regression discontinuity literatures. The estimator leverages a simple decomposition, giving it the form of a semiparametric smooth coefficient model. Optimal bandwidth selection and a suite of testing facilitie...
متن کاملNeural processing as causal inference.
Perception is about making sense, that is, understanding what events in the outside world caused the sensory observations. Consistent with this intuition, many aspects of human behavior confronting noise and ambiguity are well explained by principles of causal inference. Extending these insights, recent studies have applied the same powerful set of tools to perceptual processing at the neural l...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولExploiting Causal Independence in Bayesian Network Inference
A new method is proposed for exploiting causal independencies in exact Bayesian network inference. A Bayesian network can be viewed as representing a factorization of a joint probability into the multiplication of a set of conditional probabilities. We present a notion of causal independence that enables one to further factorize the conditional probabilities into a combination of even smaller f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stats
سال: 2023
ISSN: ['2571-905X']
DOI: https://doi.org/10.3390/stats6020036